On nil-McCoy rings relative to a monoid

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi-Armendariz skew monoid rings

Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...

متن کامل

on weak mccoy rings

in this note we introduce the notion of weak mccoy rings as a generalization of mccoy rings, and investigate their properties. also we show that, if is a semi-commutative ring, then is weak mccoy if and only if is weak mccoy.

متن کامل

On Semiprime Right Goldie Mccoy Rings

In this note we first show that for a right (resp. left) Ore ring R and an automorphism σ of R, if R is σ-skew McCoy then the classical right (resp. left) quotient ring Q(R) of R is σ̄-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (σ-skew McCoy) rings.

متن کامل

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

On primitive ideals in polynomial rings over nil rings

Let R be a nil ring. We prove that primitive ideals in the polynomial ring R[x] in one indeterminate over R are of the form I [x] for some ideals I of R. All considered rings are associative but not necessarily have identities. Köthe’s conjecture states that a ring without nil ideals has no one-sided nil ideals. It is equivalent [4] to the assertion that polynomial rings over nil rings are Jaco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cogent Mathematics & Statistics

سال: 2018

ISSN: 2574-2558

DOI: 10.1080/23311835.2018.1426184